Preliminary communication

A novel pentanuclear carbidocarbonyl anion of iron

A.T.T. HSIEH* and M.J. MAYS

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain) (Received February 16th, 1972)

Despite recent interest in polynuclear carbonyl complexes^{1,2}, very few polymetallic carbidocarbonyl complexes have been synthesised. These include the neutral $Fe_5C(CO)_{15}$ ³, $Ru_6C(CO)_{17}$ ^{4,5} and $Ru_6C(CO)_{14}$ (arene)^{5,6}, and the anion $Fe_6C(CO)_{16}$ ²⁻⁷. During the course of an investigation of polynuclear mixed metal carbonyl complexes⁸⁻¹⁰, we find that $C_5H_5(CO)_3Mo^-$ reacts with $Fe(CO)_5$ to give the unique pentanuclear carbidocarbonylferrate anion, $Fe_5C(CO)_{14}$ ²⁻, which was isolated and characterised as its tetramethylammonium salt.

A solution of $C_5H_5(CO)_3Mo^-$, prepared from $[\pi-C_5H_5Mo(CO)_3]_2$ (1.96 g, 4.0 mmole) by sodium amalgam (1-2%, 10 ml) reduction in 25 ml of dry diglyme, was added to an excess (ca. 3 ml) of Fe(CO)₅, and the mixture was gradually heated to reflux. After ½ h, the reddish brown solution was evaporated *in vacuo* to about half its original volume [to remove most of the unreacted Fe(CO)₅] and added to 200 ml of water. After filtration, the red-violet solution^{**} was treated with a saturated aqueous solution of Me₄NCl in excess to produce a voluminous precipitate which was then collected by filtration, washed well with water and dried *in vacuo* over phosphoric oxide for 1 h. The red-brown residue was extracted with anhydrous methanol (ca. 125 ml) and the deep red-violet solution was filtered, concentrated under a stream of nitrogen and cooled to -20° to give red-violet to almost black needles of the complex (2.3 g, 68% based on molybdenum). (Found: C, 33.0; H, 2.9; Fe, 32.8; N, 3.3; O, 26.1. C₂₃H₂₄Fe₅N₂O₄ calcd.: C, 33.2; H, 2.9; Fe, 33.6; N, 3.4; O, 26.9\%.)

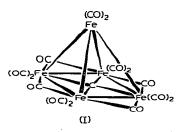
The absence of a π -C₅H₅Mo group in this complex is indicated by its NMR spectrum (in acetone- d_6) which shows only a singlet resonance at $\tau 6.57$, attributable to the methyl protons.

*Present address: Department of Chemistry, Imperial College, London SW7 2AY (Great Britain) **Acidification of this solution gives Fe₅C(CO)₁₅ as the major product.

J. Organometal. Chem., 37 (1972)

Its IR spectrum (Table 1) exhibits a total of five carbonyl stretching absorptions both in the solid state and in solution. A survey of the stretching frequencies for bridging carbonyl groups in related anionic clusters such as the polynuclear carbonylferrates¹¹ or carbonylcobaltates^{12,13} reveals that triply (or face) bridging carbonyl stretching modes absorb in the 1600–1700 cm⁻¹ region while doubly (or edge) bridging carbonyl stretching frequencies occur in the 1700–1800 cm⁻¹ region. Thus, the four higher-frequency absorptions may therefore be unequivocally assigned to terminal carbonyl stretching modes. The peak at ca. 1770 cm⁻¹ may then be associated with stretching vibrations arising from edge-bridging carbonyl groups.

TABLE 1


INFRARED SPECTRA OF [Me4N] 2 [Fe5C(CO)14] AND RELATED COMPLEXES

Complex	Phase	ν(C-O) ^α
[Me ₄ N] ₂ [Fe ₅ C(CO) ₁₄]	nujol	2032 w, 1954 vs, 1938 s(sh), 1892 m(sh), 1766 ms
	THF	2018 mw, 1979 m(sh,br), 1925 vs, 1895 s(sh), 1771 s
	MeCN	2021 vw, 1966 vs, 1930 mw(sh), 1897 w, 1773 mw
$Fe_5C(CO)_{15}$	C ₆ H ₁₂ b	2098 vw, 2050 s, 2031 s, 2012 m, 1991 m
$[Me_4N]_2[Fe_6C(CO)_{16}]$	nujol C	1956 (sh), 1944 s, 1925 (sh), 1750 w(br)
	THF C	1964 s, 1957 (sh), 1930 (sh), 1775 w(br)

^a In cm⁻¹; s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad. ^b From ref. 3 and 19.

^c From ref. 7.

From its empirical formulae, it is apparent that the anion is very closely related to the only other known pentanuclear carbidocarbonyl complex, $Fe_5C(CO)_{15}{}^3$, in having the same metal-atom framework. The most plausible structure which conforms to the "noble gas formalism" is therefore (I). For this symmetry $(C_{2\nu})$, group theory predicts nine terminal and three bridging carbonyl stretching modes which are infrared active.

The reaction of Fe(CO)₅ with $C_5H_5(CO)_3Mo^-$ in tetrahydrofuran either at room temperature or under reflux, leads only to the formation of Fe(CO)₄²⁻ \star and $[\pi$ -C₅H₅Mo(CO)₃]₂. It has previously been shown that the products obtainable

* Along with oxidation/decomposition products therefrom.

J. Organometal. Chem., 37 (1972)

from the reaction of $Fe(CO)_5$ with $Mn(CO)_5$ are critically dependent on the reaction conditions. Thus, ultraviolet irradiation of this mixture in tetrahydrofuran gives the anion $MnFe(CO)_9^{-14}$, mere heating in the same solvent yields $Fe(CO)_4^{2-} \star$ and $Mn_2(CO)_{10}$ ¹⁵, while in refluxing diglyme, the trinuclear $MnFe_2(CO)_{12}^{-1}$ is formed after five minutes¹⁶ and $Fe_6 C(CO)_{16}^{2-}$ after an hour⁷. Further investigation on this latter system indicates that at least one other anionic species is present in the reaction mixture and that this anion is, in fact, $Fe_5 C(CO)_{14}^{2-}$ on the basis of infrared evidence¹⁷

The thermal stability of the anion, $\operatorname{Fe}_5 C(CO)_{14}{}^{2-}$, is rather remarkable despite it being air-sensitive both in the solid state and in solution. The high thermal stability of this as well as other related known carbidocarbonyl complexes such as $\operatorname{Fe}_6 C(CO)_{16}{}^{2--7}$ and $\operatorname{Ru}_6 C(CO)_{17}{}^{4,5}$ must reflect a much greater stabilising effect achieved by the carbido carbon atom in these molecules. Such thermal stability also implies the probable existence of other members in the series, $\operatorname{Fe}_5 C(CO)_{15}$, $\operatorname{Fe}_5 C(CO)_{14}{}^{2-}$, $\operatorname{Fe}_5 C(CO)_{13}{}^{4-}$ and $\operatorname{Fe}_6 C(CO)_{17}$, $\operatorname{Fe}_6 C(CO)_{16}{}^{2-}$, $\operatorname{Fe}_6 C(CO)_{15}{}^{4-}$, in parallel with the well known series, $\operatorname{Co}_6 (CO)_{16}{}^{18}$, $\operatorname{Co}_6 (CO)_{15}{}^{2--12}$ and $\operatorname{Co}_6 (CO)_{14}{}^{4--13}$.

ACKNOWLEDGEMENTS

We thank Mr. C.G. Cooke for valuable discussions and the British Council for financial support (to A.T.T.H.).

REFERENCES

- 1 P. Chini, Inorg. Chim. Acta, Rev., 2 (1968) 31.
- 2 R.D. Johnston, Advan. Inorg. Chem. Radiochem., 13 (1970) 471.
- 3 E.H. Braye, L.F. Dahl, W. Hubel and D.L. Wampler, J. Amer. Chem. Soc., 84 (1962) 4633.
- 4 F. Piacenti, M. Bianchi and E. Benedetti, Chem. Commun., (1967) 775; A. Sirigu, M. Bianchi and E. Benedetti, Chem. Commun., (1969) 596.
- 5 B.F.G. Johnson, R.D. Johnston and J. Lewis, Chem. Commun., (1967) 1057; J. Chem. Soc. A, (1968) 2865.
- 6 R. Mason and W.R. Robinson, Chem. Commun., (1968) 468.
- 7 M.R. Churchill, J. Wormald, J. Knight and M.J. Mays, J. Amer. Chem. Soc., 93 (1971) 3073.
- 8 A.T.T. Hsieh and J. Knight, J. Organometal. Chem., 26 (1971) 125.
- 9 J. Knight and M.J. Mays, Chem. Commun., (1971) 62; J. Chem. Soc. Dalton, in press.
- 10 A.T.T. Hsieh and M.J. Mays, J. Organometal. Chem., in press.
- 11 K. Farmery, M. Kilner, R. Greatrex and N.N. Greenwood, J. Chem. Soc. A, (1969) 2339.
- 12 P. Chini and V.G. Albano, J. Organometal, Chem., 15 (1968) 433.
- 13 P. Chini, V.G. Albano and S. Martinengo, J. Organometal, Chem., 16 (1969) 471.
- 14 J.K. Ruff, Inorg. Chem., 7 (1968) 1818.
- 15 A.T.T. Hsieh and M.J. Mays, unpublished observations.
- 16 U. Anders and W.A.G. Graham, Chem. Commun., (1966) 291.
- 17 C.G. Cooke, personal communication.
- 18 P. Chini, Chem. Commun., (1967) 440; Inorg. Chem., 8 (1969) 1206.
- 19 J.P. Stewart, U. Anders and W.A.G. Graham, J. Organometal. Chem., 32 (1971) C49.

*See footnote previous page.

J. Organometal. Chem., 37 (1972)